Characterization on graphs which achieve a Das’ upper bound for Laplacian spectral radius

Aimei Yu a,b, Mei Lu c,* , Feng Tian a

aInstitute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
bGraduate School of the Chinese Academy of Sciences, Beijing 100039, China
cDepartment of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received 28 July 2004; accepted 21 November 2004
Available online 23 December 2004
Submitted by R.A. Brualdi

Abstract

Let $G = (V, E)$ be a graph on vertex set $V = \{v_1, v_2, \ldots, v_n\}$. For any vertex v_i, we denote by $N(v_i)$ the set of the vertices adjacent to v_i in G. Das got the following upper bound for Laplacian spectral radius:

$$\lambda_1(G) \leq \max\{|N(v_i) \cup N(v_j)| : 1 \leq i < j \leq n, v_i v_j \in E\}.$$

In this paper, we characterize all the connected graphs which achieve the above upper bound.

© 2004 Elsevier Inc. All rights reserved.

AMS classification: 05C50; 15A18

Keywords: Laplacian matrix; Spectral radius; Degree
1. Introduction

Let $G = (V(G), E(G))$ be a finite simple undirected graph on vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. For $v_i \in V(G)$, we denote by $N_G(v_i)$ the set of the vertices adjacent to v_i in G. The degree of v_i, written by $d_G(v_i)$, is the number of vertices in $N_G(v_i)$. If $W \subseteq V(G)$, we denote $N_W(v_i) = N_G(v_i) \cap W$ and $d_W(v_i) = |N_W(v_i)|$. For short, we will write $N(v_i)$ and $d(v_i)$ instead of $N_G(v_i)$ and $d_G(v_i)$, respectively. A bipartite graph is called semiregular if each vertex in the same part of a bipartition has the same degree.

Let $A(G)$ be the adjacency matrix of G and $D(G) = \text{diag}(d(v_1), d(v_2), \ldots, d(v_n))$ be the diagonal matrix of vertex degrees. Then the Laplacian matrix of G is $L(G) = D(G) - A(G)$. Clearly, $L(G)$ is a real symmetric matrix. From this fact and Geršgorin’s Theorem, it follows that its eigenvalues are non-negative real numbers. We denote by $\lambda_1(G)$ the largest eigenvalue of $L(G)$ and call it the Laplacian spectral radius of G.

Anderson and Morley [1] gave the following well known upper bound for the Laplacian spectral radius of the graph G:

$$\lambda_1(G) \leq \max\{d(v_i) + d(v_j) : v_i v_j \in E(G)\}. \quad (1)$$

About 15 years later, Rojo et al. [4] got

$$\lambda_1(G) \leq \max\{|N(v_i) \cup N(v_j)| : 1 \leq i < j \leq n\}. \quad (2)$$

Recently, Das [2] improved the upper bound in (1) and (2) and got

$$\lambda_1(G) \leq \max\{|N(v_i) \cup N(v_j)| : 1 \leq i < j \leq n, v_i v_j \in E(G)\}. \quad (3)$$

But in [2], Das did not characterize the graphs which achieve the above upper bound. In another paper [3], Das proposed a conjecture on the graphs which achieve the upper bound in (2). Here we confirm his conjecture.

2. Lemmas and results

Suppose that G has at least one edge. Let $x = (x_1, x_2, \ldots, x_n)^T$ be the eigenvector corresponding to $\lambda_1(G)$. We may assume that $x_i = 1$ for some $1 \leq i \leq n$, and $|x_k| \leq 1$ for all $1 \leq k \leq n$.

Definition. If $x_i = 1$ and $x_j = \min\{x_k : v_k \in N(v_i)\}$, then we call (v_i, v_j) a standard pair.

By Das’ proof of the upper bound in (3) (see [2]), we can obtain the following result.

Lemma 2.1 [2]. Suppose that (v_i, v_j) is a standard pair. Then

$$\lambda_1(G) \leq |N(v_i) \cup N(v_j)|.$$
Moreover, the equality holds if and only if $x_k = 1$ for each $v_k \in N(v_j) \setminus N(v_i)$, and $x_k = x_j
eq 1$ for each $v_k \in N(v_i) \setminus N(v_j)$.

From Lemma 2.1 we obtain the following result due to Das:

Theorem 2.1 [2]. If G is a graph on vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$, then

$$\lambda_1(G) \leq \max\{|N(v_i) \cup N(v_j)|: 1 \leq i < j \leq n, \ v_iv_j \in E(G)\}.$$

Suppose that F is a semiregular bipartite graph with bipartition $\{U, W\}$. Denote by F^+ the supergraph of F with the following property: if $uv \in E(F)$ or $u, v \in U$ (respectively W) with $N_U(u) = N_U(v)$ (respectively $N_W(u) = N_W(v)$).

Set

$$F^+ = \{F^+: F \text{ is a semiregular bipartite graph}\}.$$

In this paper, we prove the following theorem which was conjectured by Das in [3].

Theorem 2.2. Let G be a connected graph on vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. Then

$$\lambda_1(G) = \max\{|N(v_i) \cup N(v_j)|: 1 \leq i < j \leq n, \ v_iv_j \in E(G)\},$$

if and only if $G \in F^+$.

Proof. Let $G = F^+$, where F is a semiregular bipartite graph with bipartition $\{U, W\}$ such that for any vertex $u \in U$, $d_F(u) = r$, and for any vertex $w \in W$, $d_F(w) = s$. Since F is a subgraph of G, we have $\lambda_1(G) \geq \lambda_1(F) = r + s$.

Let v_iv_j be any edge of G. If $v_i \in U$ and $v_j \in W$, then $N_U(v_i) \subseteq N_U(v_j)$ and $N_W(v_i) \subseteq N_W(v_j)$ by the definition of F^+. So in this case $|N(v_i) \cup N(v_j)| = r + s$. If $v_i, v_j \in U$ or $v_i, v_j \in W$, say $v_i, v_j \in U$, then $N_W(v_i) = N_W(v_j)$ and $N_U(v_i) \cup N_U(v_j) \subseteq N_U(v_i)$ by the definition of F^+, where $v_i \in N_W(v_j)$. Hence

$$|N(v_i) \cup N(v_j)| \leq r + s.$$

By Theorem 2.1, we have

$$\lambda_1(G) \leq \max\{|N(v_i) \cup N(v_j)|: 1 \leq i < j \leq n, \ v_iv_j \in E(G)\} \leq r + s.$$

Hence $\lambda_1(G) = r + s$.

Now we show that if G is a connected graph on vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ with at least one edge such that

$$\lambda_1(G) = \max\{|N(v_i) \cup N(v_j)|: 1 \leq i < j \leq n, \ v_iv_j \in E(G)\},$$

then $G \in F^+$.

Let $\mathbf{x} = (x_1, x_2, \ldots, x_n)^T$ be the eigenvector corresponding to $\lambda_1(G)$. We can assume that $|x_k| \leq 1$ for all $1 \leq k \leq n$ and there is at least one element of \mathbf{x} equal to
1. Let $U = \{v_i \in V(G) : x_i = 1\}$ and $W = V(G) \setminus U$. Since G has at least one edge and sum of the eigencomponents are zero, U and W both sets are non-null. Denote $F = (V(G), E(U, W))$, where $E(U, W)$ is the set of all the edges of G with one end in U and another end in W.

Now we show that F is a semiregular bipartite graph with bipartition $\{U, W\}$ and if there is an edge $uv \in E(G)$ such that $u, v \in U$ (respectively W), then $N_W(u) = N_W(v)$ (respectively $N_U(u) = N_U(v)$).

First from the assumption

$$\lambda_1(G) = \max \{|N(v_i) \cup N(v_j)| : 1 \leq i < j \leq n, \; v_i v_j \in E(G)\},$$

and Lemma 2.1, we have the following fact.

Fact 1. Suppose that (v_i, v_j) is a standard pair. Then we have

$$\lambda_1(G) = |N(v_i) \cup N(v_j)|.$$

Furthermore, $x_k = 1$ for each $v_k \in N(v_j) \setminus N(v_i)$, and $x_k = x_j \neq 1$ for each $v_k \in N(v_i) \setminus N(v_j)$.

If (v_{i_0}, v_{j_0}) is a standard pair, then $v_{i_0} \in U$ and $v_{j_0} \in W$. We denote

$$U_1(i_0, j_0) = \{v_k : v_k \in N(v_{j_0}) \setminus N(v_{i_0})\},$$

$$W_1(i_0, j_0) = \{v_k : v_k \in N(v_{i_0}) \setminus N(v_{j_0})\},$$

$$U_2(i_0, j_0) = \{v_k : x_k = 1, v_k \in N(v_{i_0}) \cap N(v_{j_0})\},$$

$$W_2(i_0, j_0) = \{v_k : x_k \neq 1, v_k \in N(v_{i_0}) \cap N(v_{j_0})\}.$$

Obviously, $v_{i_0} \in U_1(i_0, j_0)$ and $v_{j_0} \in W_1(i_0, j_0)$. For short, in the following proof, if there is no confusion, we write U_1, U_2, W_1 and W_2, instead of $U_1(i_0, j_0), U_2(i_0, j_0), W_1(i_0, j_0)$ and $W_2(i_0, j_0)$.

From Fact 1, we have $U_1 \subseteq U$, $W_1 \subseteq W$ and $x_k = x_{j_0}$ for any vertex $v_k \in W_1$. Furthermore, it is easy to see that $U_2 \subseteq U$, $W_2 \subseteq W$ and

$$N(v_{i_0}) = W_1 \cup W_2 \cup U_2,$$

$$N(v_{j_0}) = U_1 \cup U_2 \cup W_2.$$

Hence we have the following result.

Fact 2. For any standard pair (v_{i_0}, v_{j_0}), we have

$$\lambda_1(G) = |N(v_{i_0}) \cup N(v_{j_0})| = d_F(v_{i_0}) + d_F(v_{j_0}).$$

Fact 3. If $v_i \in U_1 \cup U_2$, then $\min\{x_k : v_k \in N(v_i)\} = x_{j_0}$. That is for any vertex $v_i \in U_1 \cup U_2$, (v_i, v_{j_0}) is a standard pair.
Proof of Fact 3. Otherwise, \(v_i \neq v_{i_0} \). Let \((v_i, v_j)\) be a standard pair. Since \(U_1 \cup U_2 \subseteq N(v_{j_0}) \), we have \(v_{j_0} \in N(v_i) \), and hence \(x_j < x_{j_0} \). Noting that \(x_{j_0} = \min\{x_k : v_k \in N(v_{i_0})\} \), we get \(v_j \notin N(v_{i_0}) \), and hence \(v_j \in W \setminus (W_1 \cup W_2) \). Thus \(v_{j_0} \in N(v_i) \setminus N(v_j) \), and by Fact 1, we have \(x_{j_0} = x_j \), a contradiction. \(\square \)

Fact 4. If \(v_t \in U_1 \cup U_2 \), \(v_j \in W_2 \), then \(v_t v_j \in E(G) \).

Proof of Fact 4. By Fact 3, \((v_t, v_{j_0})\) is a standard pair. If \(v_t v_j \notin E(G) \), then \(v_j \in N(v_{j_0}) \setminus N(v_t) \). By Fact 1, we get \(x_j = 1 \), which contradicts \(v_j \in W_2 \). \(\square \)

Fact 5. If \(v_t \in U_2 \), \(v_j \in W_1 \), then \(v_t v_j \in E(G) \).

Proof of Fact 5. By Fact 1, \((v_{i_0}, v_j)\) is a standard pair. If \(v_t v_j \notin E(G) \), then \(v_t \in N(v_{i_0}) \setminus N(v_j) \). By Fact 1, we have \(x_t = x_j \neq 1 \), which contradicts \(v_t \in U_2 \). \(\square \)

Fact 6. If \(v_{j_1} \in W_1 \setminus \{v_{j_0}\}, v_{j_2} \in W_2 \), then \(d_F(v_{j_0}) = d_F(v_{j_1}) = d_F(v_{j_2}) \). Moreover, \(N_U(v_{j_0}) = N_U(v_{j_1}) \) and \(N_W(v_{j_1}) \subseteq W_1 \cup W_2 \).

Proof of Fact 6. By Fact 1, \((v_{i_0}, v_{j_0})\) and \((v_{i_0}, v_{j_1})\) are two standard pairs. So by Fact 2, we have

\[
\lambda_1(G) = |N(v_{i_0}) \cup N(v_{j_0})| = d_F(v_{i_0}) + d_F(v_{j_0}),
\]

\[
\lambda_1(G) = |N(v_{i_0}) \cup N(v_{j_1})| = d_F(v_{i_0}) + d_F(v_{j_1}).
\]

So \(d_F(v_{j_0}) = d_F(v_{j_1}) \).

Now we show that \(N_U(v_{j_0}) = N_U(v_{j_2}) \) and \(N_W(v_{j_2}) \subseteq W_1 \cup W_2 \). Let

\[
a = |U_1 \cup U_2 \cup W_1 \cup W_2|,
\]

\[
p = |\{v_k : v_k \in N(v_{j_2}) \text{ and } v_k \notin U \cup (U_1 \cup U_2)\}|,
\]

\[
q = |\{v_k : v_k \in N(v_{j_2}) \text{ and } v_k \notin W \setminus (W_1 \cup W_2)\}|.
\]

By Facts 1 and 4, we have

\[
\lambda_1(G) = \max\{|N(v_i) \cup N(v_j)| : 1 \leq i < j \leq n, v_i v_j \in E(G)\}
\]

\[
= |N(v_{i_0}) \cup N(v_{j_0})| = a
\]

\[
\geq |N(v_{i_0}) \cup N(v_{j_1})| = a + p + q.
\]

Hence \(p = 0 \) and \(q = 0 \), which imply that \(N_U(v_{j_0}) = N_U(v_{j_2}) \) and \(N_W(v_{j_2}) \subseteq W_1 \cup W_2 \). By \(N_U(v_{j_0}) = N_U(v_{j_2}) \), we have \(d_F(v_{j_0}) = d_F(v_{j_2}) \). \(\square \)

Fact 7. If \(v_{i_1} \in U_1 \setminus \{v_{i_0}\}, v_{i_2} \in U_2 \), then \(d_F(v_{i_0}) = d_F(v_{i_1}) = d_F(v_{i_2}) \). Moreover, \(N_W(v_{i_0}) = N_W(v_{i_2}) \).

Proof of Fact 7. By Fact 3, \((v_{i_1}, v_{j_0})\) and \((v_{i_2}, v_{j_0})\) are two standard pairs. Hence by Fact 2, we have
Proof of Fact 8. \[\lambda_1(G) = d_F(v_{i_0}) + d_F(v_{j_0}), \]
\[\lambda_1(G) = d_F(v_{i_1}) + d_F(v_{j_0}) \]
and
\[\lambda_1(G) = d_F(v_{i_2}) + d_F(v_{j_0}). \]
Hence \(d_F(v_{i_0}) = d_F(v_{i_1}) = d_F(v_{i_2}) \). By Facts 4 and 5, \(NW(v_h) = NW(v_l) \). □

Fact 8. For any two vertices \(v_h, v_l \in U \) with \(v_h v_l \in E(G) \), \(d_F(v_h) = d_F(v_l) \) and \(NW(v_h) = NW(v_l) \).

Proof of Fact 8. Let \((v_h, v_l) \) be a standard pair. Then we have \(v_l \in U_2(h, j) \). Otherwise, by Fact 1, \(v_l \in W \). Hence, Fact 8 holds by Fact 7. □

Fact 9. Let \(v_h, v_l \in U \) with \(v_h v_l \notin E(G) \). If there exists a path \(P \) connecting \(v_h \) and \(v_l \) such that all internal vertices of \(P \) are in \(W \), then \(d_F(v_h) = d_F(v_l) \).

Proof of Fact 9. Assume, without loss of generality, that \(P = v_h v_1 \cdots v_s v_l \) be the shortest path connecting \(v_h \) and \(v_l \) with \(v_i \in W \) for \(1 \leq i \leq s \).

If \((v_h, v_l) \) is a standard pair, then \(v_2 \in U_1(h, 1) \cup U_2(h, 1) \cup W_2(h, 1) \). Since \(v_h v_2 \notin E(G) \), we have \(v_2 \notin W_2(h, 1) \), and then \(v_2 \in U_2(h, 1) \). Thus \(s = 1 \) and Fact 9 holds by Fact 7. Hence we can assume that \((v_h, v_l) \) is a standard pair with \(x_j \neq x_1 \). Since \(v_1 \in N(v_l) \) and \(x_1 \neq x_j \), \(v_1 \in W_2(h, j) \) by Fact 1. If \(s \geq 2 \), we have \(v_2 \notin W_2(h, j) \) by Fact 6. But in this case, we have \(v_h v_2 \in E(G) \), a contradiction. Thus \(s = 1 \), i.e., \(P = v_h v_1 v_l \). By Fact 6, \(N_U(v_j) = N_U(v_l) \). Noting that \(v_h v_l \notin E(G) \), we have \(v_l \in U_1(h, j) \} \{ v_h \}. Thus Fact 9 holds by Fact 7. □

By Facts 8 and 9, we easily have the following result.

Fact 10. For any two vertices \(v_h, v_l \in U \) with \(v_h v_l \notin E(G) \), \(d_F(v_h) = d_F(v_l) \).

Fact 11. For any vertex \(w \in W \), \(N_U(w) \neq \emptyset \).

Proof of Fact 11. Suppose that there exists a vertex \(w \in W \) such that \(N_U(w) = \emptyset \). Since \(G \) is connected, there is a path connecting \(w \) and some vertex \(u \) of \(U \). Assume that \(P = w(= v_0) v_1 \cdots v_l v_{l+1}(= u) \) is the shortest path connecting \(w \) and \(u \) such that \(v_i \in W \) for \(1 \leq i \leq l \).

If \((v_{l+1}, v_l) \) is a standard pair, then \(v_{l-1} \in U_1(l + 1, l) \) by \(v_{l-1} v_{l+1} \notin E(G) \), a contradiction. Hence, we can assume that \((v_{l+1}, v_l) \) is a standard pair with \(x_l \neq x_j \). Since \(v_l \in N(v_{l+1}) \) and \(x_l \neq x_j \), by Fact 1, \(v_l \in W_2(l + 1, j) \). By Fact 6, \(v_{l-1} \in W_1(l + 1, j) \cup W_2(l + 1, j) \). Thus \(v_{l-1} v_{l+1} \in E(G) \), a contradiction. □

Fact 12. For any two vertices \(v_h, v_l \in W \) with \(v_h v_l \in E(G) \), \(d_F(v_h) = d_F(v_l) \) and \(N_U(v_h) = N_U(v_l) \).
Proof of Fact 12. By Fact 11, there exists $v_i \in U$ such that $v_i v_j \in E(G)$. If (v_i, v_j) is a standard pair, then $v_j \in W_2(i, h)$. Thus Fact 12 holds by Fact 6. Hence we can assume that (v_i, v_j) is a standard pair with $x_j \neq x_h$. Since $v_h \in N(v_i)$ and $x_j \neq x_h$, we have $v_h \in W_2(i, j)$ by Fact 1. By Fact 6, $v_j \in W_1(i, j) \cup W_2(i, j)$. Thus Fact 12 holds by Fact 6. \(\square\)

Fact 13. For any two vertices $v_k, v_l \in W$ with $v_k v_l \notin E(G)$, $d_F(v_k) = d_F(v_l)$.

Proof of Fact 13. For any two vertices $v_k, v_l \in W$ with $v_k v_l \notin E(G)$, we have $N_U(v_k) \cap N_U(v_l) = \emptyset$, by Fact 11. If $N_U(v_k) \cap N_U(v_l) \neq \emptyset$, say $v_i \in N_U(v_k) \cap N_U(v_l)$, then $d_F(v_h) = d_F(v_l)$ by Fact 6. Hence we can assume that $N_U(v_k) \cap N_U(v_l) = \emptyset$. Assume $v_i \in N_U(v_k)$ and $v_i \in N_U(v_l)$. Let (v_i, v_j) and (v_i, v_j) be two standard pairs. By Fact 6, $d_F(v_k) = d_F(v_j)$ and $d_F(v_l) = d_F(v_j)$. By Fact 2, we have

$$\lambda_1(G) = d_F(v_i) + d_F(v_j) = d_F(v_j) + d_F(v_i).$$

But by Facts 8 and 10, we have $d_F(v_i) = d_F(v_j)$. Hence we have $d_F(v_j) = d_F(v_j) = d_F(v_j)$ and then $d_F(v_k) = d_F(v_l)$. \(\square\)

By Facts 8, 10, 12 and 13, we have $G \in \mathcal{F}^+$. This completes the proof of our Theorem. \(\square\)

Acknowledgments

Many thanks to the anonymous referee for his/her many helpful comments and suggestions, which have considerably improved the presentation of the paper.

References