On the spectral radius of graphs with cut edges

Huiqing Liu, Mei Lu, Feng Tian

Abstract

We study the spectral radius of graphs with \(n \) vertices and \(k \) cut edges. In this paper, we show that of all the connected graphs with \(n \) vertices and \(k \) cut edges, the maximal spectral radius is obtained uniquely at \(K^k_{n}\), where \(K^k_{n} \) is a graph obtained by joining \(k \) independent vertices to one vertex of \(K_{n-k} \). We also discuss the limit point of the maximal spectral radius.

AMS classification: 05C50; 15A18

Keywords: Spectral radius; Cut edge; Limit point

1. Introduction

Let \(G = (V, E) \) be a simple undirected graph with \(n \) vertices and \(k \) cut edges. For \(v \in V(G) \), the degree of \(v \), written by \(d_G(v) \), is the number of edges incident with \(v \). We will use \(G - x \) or \(G - xy \) to denote the graph that arises from \(G \) by deleting the vertex \(x \in V(G) \) or the edge \(xy \in E(G) \). Similarly, \(G + xy \) is a graph that arises from \(G \) by adding an edge \(xy \notin E(G) \), where \(x, y \in V(G) \).
A cut edge in a connected graph G is an edge whose deletion breaks the graph into two components. Denote by G_k^n the set of graphs with n vertices and k cut edges. The graph K_k^n is a graph obtained by joining k independent vertices to one vertex of K_{n-k}. For example, for $n = 6$, $K_6^0 = K_6$, K_6^3 is a star $K_{1,3}$ and K_6^1, K_6^2, K_6^3 are shown in Fig. 1. In general, $K_n^0 = K_n$, K_{n-1}^{n-1} is a star $K_{1,n-1}$ and $K_n^{n-2} \cong K_n^{n-1}$.

Let $A(G)$ be the adjacency matrix of a graph G. The spectral radius, $\rho(G)$, of G is the largest eigenvalue of $A(G)$. For results on the spectral radii of graphs, the reader is referred to [3–5] and the references therein. When G is connected, $A(G)$ is irreducible and by the Perron–Frobenius Theorem, the spectral radius is simple and has a unique positive eigenvector. We will refer to such an eigenvector as the Perron vector of G. Note that the spectral radius increases if we add an edge to G.

In [2], Brualdi and Solheid proposed the following problem concerning spectral radii:

Problem. Given a set of graphs \mathcal{I}, find an upper bound for the spectral radii of graphs in \mathcal{I} and characterize the graphs in which the maximal spectral radius is attained.

In [1], Berman and Zhang studied this question for graphs with n vertices and k cut vertices, and described the graph that has the maximal spectral radius in this class. In this paper, we investigate the same question for $\mathcal{I} = G_k^n$, the set of connected graphs with n vertices and k cut edges. We show that of all the connected graphs with n vertices and k cut edges, the maximal spectral radius is obtained uniquely at K_k^n. Note that the special cases for $k = n - 1$ and $k = n - 3$ are contained in [6,8], respectively.

2. **Lemmas and results**

Denote the characteristic polynomial of a graph G by $p(G; \lambda)$.

Lemma 1 [7]. Let v be a pendant vertex of a graph G and $vw \in E(G)$. Then

$$p(G; \lambda) = \lambda p(G - v; \lambda) - p(G - v - w; \lambda).$$
The proof of our main result is carried out mainly by the following lemma (given in [9]), which is a stronger version of a similar lemma in [8]. We cite the proof here for reference only.

Lemma 2 [9]. Let G be a connected graph and $\rho(G)$ be the spectral radius of $A(G)$. Let u, v be two vertices of G and d_v be the degree of vertex v. Suppose $v_1, v_2, \ldots, v_t \in N(v) \setminus N(u)$, and $x = (x_1, x_2, \ldots, x_n)$ is the Perron vector of $A(G)$, where x_i corresponds to the vertex v_i ($1 \leq i \leq n$). Let G^* be the graph obtained from G by deleting the edges (v, v_i) and adding the edges (u, v_i) ($1 \leq i \leq t$). If $x_u \geq x_v$, then

$$\rho(G) < \rho(G^*).$$

Proof. Since

$$x^T(A(G^*) - A(G))x = 2 \sum_{i=1}^{s} x_i(x_u - x_v) \geq 0,$$

we have

$$\rho(G^*) = \max_{||y||=1} y^T A(G^*) y \geq x^T A(G^*) x \geq x^T A(G) x = \rho(G).$$

(1)

Assume that $\rho(G^*) = \rho(G)$, then the equalities in (1) hold. So

$$\rho(G^*) = x^T A(G^*) x,$$

and then $A(G^*) x = \rho(G^*) x$. Thus

$$\rho(G^*) x_v = (A(G^*) x)_v = \sum_{v_i \in N_G^*(v)} x_i.$$

(2)

Since $A(G) x = \rho(G) x$, we have

$$\rho(G) x_v = (A(G) x)_v = \sum_{v_i \in N_G(v)} x_i = \sum_{v_i \in N_G^*(v)} x_i + \sum_{i=1}^{s} x_i.$$

(3)

Note that $x_i > 0$ ($1 \leq i \leq n$) by $x = (x_1, x_2, \ldots, x_n)$ being the Perron vector of G, and hence, by (2) and (3), $\rho(G^*) x_v < \rho(G) x_v$. Thus $\rho(G^*) < \rho(G)$, a contradiction. Therefore $\rho(G) < \rho(G^*)$. □

Let $K_{1,k}$ be a star with vertex set $V(K_{1,k}) = \{v_0, v_1, \ldots, v_k\}$, where v_0 is the center of the star. Let $K(a_0, \{a_1, \ldots, a_k\})$ be a graph obtained from $K_{1,k}$ by replacing v_i by clique K_{a_i} ($a_i \geq 1$, $i = 0, 1, \ldots, k$) (see Fig. 2). Denote

$$\mathcal{K}_{n}^k = \left\{ K(a_0, \{a_1, \ldots, a_k\}) : a_i \geq 1, \ 0 \leq i \leq k, \ \sum_{i=0}^{k} a_i = n \right\}.$$
Fig. 2. $K(a_0, [a_1, \ldots, a_k])$.

Obviously, $K^k_n = K(n - k, [1, \ldots, 1])$.

Theorem 3. Of all the connected graphs with n vertices and k cut edges, the maximal spectral radius is obtained uniquely at K^k_n.

Proof. We have to prove that if $G \in \mathcal{G}^k_n$, then $\rho(G) \leq \rho(K^k_n)$ with equality only when $G \cong K^k_n$. Let $E_1 = \{e_1, e_2, \ldots, e_k\}$ be the set of the cut edges of G. Denote the Perron vector of $A(G)$ by $x = (x_0, x_1, \ldots, x_{n-1})$, where x_i corresponds to the vertex v_i ($0 \leq i \leq n - 1$). Note that if we add an edge e to a connected graph G, then $\rho(G + e) > \rho(G)$ as the adjacent matrix of a connected graph is irreducible. So we can have the following assumption.

Assumption 0. Each component of $G - E_1$ is a clique.

If $k = 0$, then $G = K_n$ by Assumption 0 and the theorem holds immediately. Therefore we may assume that $k \geq 1$. Again, by Assumption 0, we can denote the components of $G - E_1$ by $K_{a_0}, K_{a_1}, \ldots, K_{a_k}$, where a_0, a_1, \ldots, a_k are the numbers of the vertices of these components, respectively. Then $a_0 + a_1 + \cdots + a_k = n$.

Let $V_{a_i} = \{v \in K_{a_i} : v$ is an end vertex of the cut edges of $G\}$. Choose $G \in \mathcal{G}^k_n$ such that the spectral radius of G is as large as possible. In the following, we will prove some facts.

Fact 1. $|V_{a_i}| = 1$ for $0 \leq i \leq k$.

Proof of Fact 1. Suppose that $|V_{a_i}| > 1$ for some i, $0 \leq i \leq k$. Let $u, u' \in V_{a_i}$ and assume that $x_u > x_{u'}$. Denote $N(u') \setminus N(u) = \{w_1, w_2, \ldots, w_s\}$. Then $s \geq 1$ by $u' \in V_{a_i}$. Let $G^* = G - \{u'w_1, \ldots, u'w_s\} + \{uw_1, \ldots, uw_s\}$. Then $G^* \in \mathcal{E}_n^k$. By Lemma 2, $\rho(G^*) > \rho(G)$, a contradiction. Therefore $|V_{a_i}| = 1$. □

Fact 2. $G \in \mathcal{E}_n^k$.

Proof of Fact 2. Assume that $G \notin \mathcal{E}_n^k$. Then there exist $v \in V(K_{a_i})$ and $v' \in V(K_{a_j}), 0 \leq i, j \leq k, i \neq j$ such that $|N(v) \setminus V(K_{a_i})| \geq 2$ and $|N(v') \setminus V(K_{a_j})| \geq 2$. Obviously, $[v] = V_{a_i}$ and $[v'] = V_{a_j}$ by Fact 1. Assume, without loss of generality, that $x_v \geq x_{v'}$. Denote $N(v') \setminus (V(K_{a_i}) \cup \{v\}) = \{z_1, \ldots, z_t\}$. Then $t \geq 1$ by $|N(v') \setminus V(K_{a_j})| \geq 2$. Let $G^* = G - \{v'z_1, \ldots, v'u_1\} + \{vz_1, \ldots, vz_t\}$. Then $G^* \in \mathcal{E}_n^k$. By Lemma 2, $\rho(G^*) > \rho(G)$, a contradiction. □

By Fact 1, we can assume that $V_{a_i} = \{v_i\}, 0 \leq i \leq k$. By Fact 2, we can assume that $v_0v_j \in E(G), 1 \leq j \leq k$. Assume, without loss of generality, that $a_k \geq a_{k-1} \geq \cdots \geq a_1 \geq 1$.

Fact 3. $G \cong K\left(a_0, \{1, \ldots, 1, n - a_0 - k + 1\}\right)$.

Proof of Fact 3. Suppose that $a_i > 1$ for some i, $1 \leq i \leq k - 1$. Then $a_k > 1$. Without loss of generality, we assume that $x_{v_1} \geq x_{v_0}$. Denote $N(v_1) \setminus \{v_0\} = \{w_1, \ldots, w_{a_1-1}\}$. Let $G^* = G - \{v_1w_1, \ldots, v_1w_{a_1-1}\} + \{v_kw_1, \ldots, v_kw_{a_1-1}\}$. Then $G^* \in \mathcal{E}_n^k$. By Lemma 2, $\rho(G^*) > \rho(G)$, a contradiction. □

Fact 4. $a_0 = n - k$.

Proof of Fact 4. Obviously, $a_0 = n - (a_1 + a_2 + \cdots + a_k) \leq n - k$. Suppose that $a_0 < n - k$. Then $a_1 > 1$ by Fact 3. Denote $N(v_1) \setminus \{v_0\} = \{w_1, \ldots, w_{a_1-1}\}$ and $N(v_k) \setminus \{v_0\} = \{z_1, \ldots, z_{a_k-1}\}$. If $x_{v_1} \geq x_{v_0}$, we let
\[
G^* = G - \{v_0v_1, \ldots, v_0v_{k-1}, v_0z_1, \ldots, v_0z_{a_k-1}\} + \{v_kw_1, \ldots, v_kw_{k-1}, v_kz_1, \ldots, v_kz_{a_k-1}\}.
\]
If $x_{v_1} \leq x_{v_0}$, we let
\[
G^* = G - \{v_kw_1, \ldots, v_kw_{a_k-1}\} + \{v_0w_1, \ldots, v_0w_{a_k-1}\}.
\]
Then in either case, $G^* \in \mathcal{E}_n^k$. By Lemma 2, $\rho(G^*) > \rho(G)$, a contradiction. □

By Fact 4, Theorem 3 holds. □
Theorem 4. The characteristic polynomial of $K_k^\ast n$ is
$$
\lambda^{k-1}(\lambda + 1)^{n-k-2}(\lambda^3 - (n - k - 2)\lambda^2 - (n - 1)\lambda + (n - k - 2)k).
$$

Proof. By a repeated using of Lemma 1, we have
$$
p(K_k^\ast n; \lambda) = \lambda p(K_{n-1}^\ast; \lambda) - p(K_{n-k-1} \cup (k-1)K_1; \lambda)
= \lambda^2 p(K_{n-2}^\ast; \lambda) - \lambda p(K_{n-k-1} \cup (k-2)K_1; \lambda)
- p(K_{n-k-1} \cup (k-1)K_1; \lambda)
= \cdots
= \lambda^k p(K_{n-k}; \lambda) - \lambda^{k-1} p(K_{n-k-1}; \lambda) - \lambda^{k-2} p(K_{n-k-1} \cup K_1; \lambda)
- \cdots - \lambda p(K_{n-k-1} \cup (k-2)K_1; \lambda)
- p(K_{n-k-1} \cup (k-1)K_1; \lambda)
= \lambda^k (\lambda - n + k + 1)(\lambda + 1)^{n-k-1}
- k\lambda^{k-1}(\lambda - n + k + 2)(\lambda + 1)^{n-k-2}
= \lambda^{k-1}(\lambda + 1)^{n-k-2}(\lambda^3 - (n - k - 2)\lambda^2
- (n - 1)\lambda + (n - k - 2)k). \quad \Box
$$

Corollary 5. The spectral radius ρ of the graph $K_k^\ast n$ satisfies the equation
$$
\rho^3 - (n - k - 2)\rho^2 - (n - 1)\rho + (n - k - 2)k = 0.
$$

By Theorem 3 and Corollary 5, we have the following corollaries.

Corollary 6 [6]. Let T be a tree on n vertices. Then
$$
\rho(T) \leq \sqrt{n - 1},
$$
and the equality holds if and only if $T \cong K_{1,n-1}$, the star with n vertices.

Corollary 7. Let ρ be the spectral radius of the graph $K_k^\ast n$. If $1 \leq k \leq n - 1 - \sqrt{n - 1}$, then
$$
\rho < n - k - 1 + \frac{k}{(n-k)^2 - n}.
$$
Moreover, if k is fixed, then
$$
\lim_{n \to \infty} \left\{ \rho - \left(n - k - 1 + \frac{k}{(n-k)^2 - n} \right) \right\} = 0.
$$

Proof. Since $K_k^\ast n$ contain a complete subgraph of order $n - k$ and a star $K_{1,n-1}$,
$$
\rho(K_k^\ast n) > \max\{n - k - 1, \sqrt{n - 1}\}. \text{ Since } 1 \leq k \leq n - 1 - \sqrt{n - 1}, \text{ we have } n \geq 3 \text{ and } n - k - 1 \geq \sqrt{n - 1} > 0. \text{ Hence } \rho(K_k^\ast n) > n - k - 1 \text{ and } (n-k)^2 - n \geq 2\sqrt{n - 1} > 0. \text{ Denote } \rho = n - k - 1 + x, \text{ where } x > 0. \text{ By Corollary 5, we have }$$
\[x^3 + (2n - 2k - 1)x^2 + ((n - k)^2 - n)x - k = 0. \]
Thus \(x < \frac{k}{(n - k)^2 - n} \) and the results hold. \(\square \)

Corollary 8. Let \(\rho \) be the spectral radius of the graph \(K_n^k \). If \(k \) is fixed and \(n - 1 - \sqrt{n - 1} < k \leq n - 3 \), then\[\rho < \sqrt{n - 1} + \frac{n - k - 2}{2(\sqrt{n - 1} - (n - k - 2))}. \]

Proof. Since \(K_n^k \) contain a complete subgraph of order \(n - k \) and a star \(K_1, n - 1 \), \(\rho(K_n^k) > \max\{n - k - 1, \sqrt{n - 1}\} \). Since \(k > n - 1 - \sqrt{n - 1} \), we have \(n - k - 1 < \sqrt{n - 1} \). Thus \(\rho(K_n^k) > \sqrt{n - 1} \). Denote \(\rho = \sqrt{n - 1} + y \), where \(y > 0 \). By Corollary 5, we have\[y^3 + \left(3\sqrt{n - 1} - (n - k - 2)\right)y^2 + 2\left((n - 1) - \sqrt{n - 1}(n - k - 2)\right)y - (n - k - 1)(n - k - 2) = 0. \]
Thus\[y < \frac{(n - k - 2)(n - k - 1)}{2((n - 1) - \sqrt{n - 1}(n - k - 2))} < \frac{n - k - 2}{2(\sqrt{n - 1} - (n - k - 2))} \]
as \(\sqrt{n - 1} > n - k - 1 \), and hence \(\rho < \sqrt{n - 1} + \frac{n - k - 2}{2(\sqrt{n - 1} - (n - k - 2))}. \) \(\square \)

Acknowledgements

The authors are thankful to anonymous referee for his/her useful comments.

References