Edge fault tolerance of super edge connectivity for three families of interconnection networks

Dongye Wang, Mei Lu *

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history:
Received 24 December 2009
Received in revised form 2 August 2010
Accepted 7 November 2011
Available online 18 November 2011

Keywords:
Edge fault tolerance of super edge connectivity
Edge connectivity
Super-κ
Interconnection network

ABSTRACT

Let \(G = (V, E) \) be a connected graph. \(G \) is said to be super edge connected (or super-\(\kappa \) for short) if every minimum edge cut of \(G \) isolates one of the vertex of \(G \). A graph \(G \) is called \(m \)-super-\(\kappa \) if for any edge set \(S \subset E(G) \) with \(|S| < m \), \(G - S \) is still super-\(\kappa \). The maximum cardinality of \(m \)-super-\(\kappa \) is called the edge fault tolerance of super edge connectivity of \(G \). In this paper, we discuss the edge fault tolerance of super edge connectivity of three families of interconnection networks.

1. Introduction

We use Bondy and Murty [3] for terminology and notation not defined here and only consider finite simple undirected graphs. Let \(G = (V, E) \) be a connected graph. For \(v \in V(G) \), the degree of \(v \), written by \(d(v) \), is the number of edges incident with \(v \). Let \(\delta(G) = \min\{d(v) | v \in V(G)\} \) and it is called the minimum degree of \(G \). For a subset \(S \subset V(G) \), \(G[S] \) is the subgraph of \(G \) induced by \(S \). An edge subset \(T \subset E(G) \) is an edge cut if \(G - T \) is disconnected. The edge connectivity, denoted by \(\kappa \), is the minimum cardinality of the set of all edge cuts of \(G \).

It is well known that the edge connectivity \(\kappa \) is an important measurement for the fault tolerance of networks. In general, the larger \(\kappa \) is, the more reliable a network is. Obviously, \(\kappa \leq \delta(G) \). In [2], Bauer et al.*** defined the so-called super-\(\kappa \) graphs. A graph \(G \) is said to be super edge-connected (in short, super-\(\kappa \)) if every minimum edge cut is the set of edges incident with some vertex of \(G \). There are much research on super-\(\kappa \), the reader is referred to [5,11,13,16,18] and the references therein.

In [8,9], Esfahanian and Hakimi proposed the concept of restricted edge connectivity of graphs which generalized the concept of super-\(\kappa \). Then Fábrega and Fiol [10] introduced the \(k \)-restricted edge connectivity of interconnection networks. Let \(G \) be a graph. An edge set \(S \subset E \) is said to be a \(k \)-restricted edge cut if \(G - S \) is disconnected and there are no components whose cardinalities are smaller than \(k \) in \(G - S \). The minimum cardinality of \(k \)-restricted edge cut of \(G \) is called \(k \)-restricted edge connectivity of \(G \), denoted by \(\lambda_k(G) \). \(k \)-restricted edge connectivity is another important parameter in measuring the reliability and fault tolerance of large interconnection networks. In particular, estimating the bound for \(\lambda_k(G) \) is of great interest, and many results have been obtained in [1,6,12,17,19–26].

In [14], Hong and Meng defined another index to measure the reliability of networks.

* Corresponding author.

E-mail addresses: wangdy04@mails.tsinghua.edu.cn (D. Wang), mlu@math.tsinghua.edu.cn (M. Lu).
Definition 1.1 ([14]). A graph G is said to be m-super edge connected (m-super-λ for short) if $G - S$ is super-λ for any $S \subseteq E(G)$ with $|S| \leq m$.

From the definition, we know that G is 0-super-λ is equivalent to that G is super-λ. Furthermore, if G is a-super-λ, then G is also b-super-λ, for any $0 \leq b \leq a$. So m-super-λ is a generalization of super-λ.

The edge fault tolerance of super edge connectivity of G is an integer m such that G is m-super-λ but not $(m + 1)$-super-λ, denoted by $S_k(G)$.

In [14], Hong and Meng gave an upper and lower bound for $S_k(G)$. Moreover, more refined bounds for $S_k(G)$ of Cartesian product graphs, edge transitive graphs and regular graphs are given.

In this paper, we will give some bounds of $S_k(G)$ for three families of interconnection networks.

Before proceeding, we introduce some notions which will be used in the discussions in the next sections. Let $G = (V, E)$ be a graph. For two disjoint vertex sets $U_1, U_2 \subseteq V(G)$, we use $[U_1, U_2]_G$ to denote the edge set of G with one end in U_1 and the other end in U_2. For any vertex set $A \subseteq V(G)$, denote \(\omega_G(A) = \begin{bmatrix} A \setminus \overline{A} \end{bmatrix}_G \), where $\overline{A} = V(G) - A$ is the complement of A. The subscription G is omitted when the graph under consideration is obvious. Next we cite two lemmas which will be used in the following proofs.

Lemma 1.2 ([14]). A graph G is super-λ if and only if $\omega(A) > \delta(G)$ for any $A \subseteq V(G)$ with $2 \leq |A| \leq \left\lfloor \frac{|V(G)|}{2} \right\rfloor$ and $G[A]$ and $G[\overline{A}]$ being connected.

Lemma 1.3 ([14]). Let G be a connected graph with minimum degree $\delta(G)$. Then $S_k(G) \leq \delta(G) - 1$.

2. Three families of interconnection networks

The following three families of interconnection networks which we will discuss in the next sections were introduced in [4].
2.1. The first family $G(G_0, G_1; M)$ of networks

Let G_0 and G_1 be two graphs with the same number of vertices. Then $G(G_0, G_1; M)$ is a new graph with vertex set $V(G) = V(G_0) \cup V(G_1)$ and edge set $E(G) = E(G_0) \cup E(G_1) \cup M$, where M is an arbitrary perfect matching between the vertices of G_0 and G_1 (see Fig. 1).

2.2. The second family $G(G_0, G_1, \ldots, G_{r-1}; M_{r})$ of networks

Let r and t be positive integers with $r \geq 3$. Let $G_0, G_1, \ldots, G_{r-1}$ be graphs with $|V(G_i)| = t$ for $i = 0, 1, \ldots, r-1$. Then $G = G(G_0, G_1, \ldots, G_{r-1}; M_{r})$ is a graph with vertex set $V(G) = V(G_0) \cup V(G_1) \cup \cdots \cup V(G_{r-1})$ and edge set $E(G) = E(G_0) \cup E(G_1) \cup \cdots \cup E(G_{r-1}) \cup M_{r}$, where $M_{r} = \bigcup_{i=0}^{r-1} M_{i,i+1(\text{mod} r)}$ and $M_{i,i+1(\text{mod} r)}$ is an arbitrary perfect matching between $V(G_i)$ and $V(G_{i+1(\text{mod} r)})$ (see Fig. 2). Recursive circulant graphs [15] and k-ary n-cubes [7] are special cases of this family.

2.3. The third family SP_n of networks

We define the graph SP_n for $n \geq 3$. SP_3 is a cycle of length 6. For $n \geq 4$, SP_n consists of n disjoint SP_{n-1}'s, say $SP_1^{(1)}, SP_2^{(1)}, \ldots, SP_{n-1}^{(1)}$. The vertex set of each $SP_{n-1}^{(i)}$ for $1 \leq i \leq n$ is divided arbitrarily into $n-1$ disjoint vertex sets equally, say $S_1^{(i)}, S_2^{(i)}, \ldots, S_{n-1}^{(i)}$. For every $SP_{n-1}^{(i)}$ and $SP_{n-1}^{(j)}$, $i \neq j$, there exists a perfect matching between $S_x^{(i)}$ and $S_y^{(j)}$ for some x and y, so that SP_n is $(n-1)$-regular. Examples of SP_3, SP_4 and SP_5 are shown in Fig. 3.

![Fig. 3](image-url)

(a) SP_3, (b) SP_4, (c) SP_5.

3. The first family $G(G_0,G_1;M)$ of networks

In this section, we will give lower bound of $S_i(G)$ for $G = G(G_0,G_1;M)$.

Theorem 3.1. Let $G_i = (V_i,E_i)$ be a connected graph of order n with $\delta_i = \delta(G_i) = \lambda(G_i) = \lambda_i \geq 2$, $i = 0,1$. Let $G = G(G_0,G_1;M)$ and $\delta = \min\{\delta_0,\delta_1\}$. Then

$$S_i(G) \geq \begin{cases} \delta - 2 & \text{if } \delta \leq \frac{n}{2}, \\ n - \delta - 2 & \text{if } \frac{n}{2} \leq \delta \leq n - 2. \end{cases}$$

Proof. Set $m = \min \{\delta - 2, n - \delta - 2\}$. Then $m \geq 0$. We will show that G is m-super-δ, that is, for any $S \subseteq E(G)$ with $|S| \leq m$, $G - S$ is super-δ. Let $S \subseteq E(G)$ with $|S| \leq m$, $G' = G - S$ and A a vertex set of $V(G)$ with $2 \leq |A| \leq \left\lfloor \frac{|V(G)|}{2} \right\rfloor = n$ and $G[A]$ and $G'[\overline{A}]$ being connected.

If G_0 and G_1 are disconnected in $G - \overline{A}$, then $\omega(A) \geq \lambda_0 + \lambda_1 = \delta_0 + \delta_1$. Thus we have

$$\omega_A(G) \geq \omega(A) \geq |S| \geq n - (\delta - 2) \geq \delta + 2 > \delta(G').$$

By Lemma 1.2, $G - S$ is super-δ. If G_0 and G_1 are connected in $G - \overline{A}$, then $\omega(A) = n$ by the definition of G. Thus

$$\omega_A(G) \geq \omega(A) \geq n - (n - \delta - 2) = \delta + 2 > \delta(G').$$

and $G - S$ is super-δ by Lemma 1.2.

Now we assume, without loss of generality, that G_0 is disconnected and G_1 is connected in $G - \overline{A}$. Then $A \subset V(G_0)$ from $|A| \leq n$. Let $A = a$. Then $a \geq 2$. We suppose, to the contrary, that $\omega_A(G) \leq \delta(G')$.

Since $\delta(G') \geq \omega_A(G) \geq \omega(A) - |S| \geq \omega(A) - (\delta - 2)$ and $\delta(G') \leq \delta(G) = \delta + 1$, we have

$$2\delta \geq \omega(A) + 1 = \omega_{G_0}(A) + ||A, G_1|| + 1 = \omega_{G_0}(A) + a + 1. \quad (1)$$

Since G_0 is disconnected in $G - \overline{A}$, $\omega_{G_0}(A) \geq \lambda_0 = \delta_0 \geq \delta$. By (1), we have $2\delta \geq \delta + a + 1$. Thus $\delta \geq a + 1$.

On the other hand, for any $z \in A, d_{G_i,\overline{A}}(z) = d_{G_i}(z) - d_A(z) \geq \delta - (a - 1)$. Thus

$$\omega_{G_0}(A) = \sum_{z \in A} d_{G_0,\overline{A}}(z) \geq a(\delta - a + 1).$$

From (1) and $\delta \geq a + 1$, we have

$$(2 - a)(a + 1) \geq -a^2 + 2a + 1,$$

which implies $a \leq 1$, a contradiction. Thus $\omega_A(G) > \delta(G')$ and then $G - S$ is super-δ by Lemma 1.2. \qed

If G_0 and G_1 are regular graphs, we will have the following result which is stronger than Theorem 3.1.

Theorem 3.2. Let $G_i = (V_i,E_i)$ be a connected δ_i-regular graph of order n with $\delta_i = \delta(G_i) = \lambda(G_i) = \lambda_i \geq 2$, $i = 0,1$. Let $G = G(G_0,G_1;M)$ and $\delta = \min\{\delta_0,\delta_1\}$. Then

$$S_i(G) \geq \begin{cases} \delta - 1 & \text{if } \delta \leq \frac{n}{2}, \\ n - \delta - 1 & \text{if } \frac{n}{2} \leq \delta \leq n - 2. \end{cases}$$

Proof. Let $m = \min \{\delta - 1, n - \delta - 1\}, S \subseteq E(G)$ with $|S| \leq m$ and $G' = G - S$. We will show that $G - S$ is super-δ.

Let A be a vertex set of $V(G)$ with $2 \leq |A| \leq \left\lfloor \frac{|V(G)|}{2} \right\rfloor = n$ and $G[A]$ and $G'[\overline{A}]$ being connected.

If G_0 and G_1 are disconnected in $G - \overline{A}$ and $|S| = 0$, then $\omega_A(G) = \omega_A(G) \geq \delta_0 + \delta_1 \geq 2\delta > \delta + 1 = \delta(G')$. If G_0 and G_1 are disconnected and $|S| > 0$, then $\omega_A(G) \geq \lambda_0 + \lambda_1 = \delta_0 + \delta_1$. Thus

$$\omega_A(G) \geq \omega(A) - |S| \geq \delta_0 + \delta_1 - (\delta - 1) \geq \delta + 1.$$
We will show that for any proof.

Theorem 4.1. Assume, without loss of generality, that \(G_0 \) is disconnected and \(G_1 \) is connected in \(G = [A, \overline{A}] \). Then \(A \subset V(G_0) \). Let \(|A| = a\). Then \(a \geq 2 \). If \(|S| = 0\), then \(\omega_C(A) = \omega(A) + a \geq \delta + 2 > \delta(G') \) and \(G - S \) is super-\(\lambda \) by Lemma 1.2. Hence we can assume \(|S| \geq 1\) in the following discussion. Thus \(\delta(G') \leq \delta(G) - 1 = \delta \).

We suppose, to the contrary, that \(\omega_C(A) \leq \delta(G') \). Since \(\omega_C(A) \geq \omega(A) - |S| \geq \omega(A) - (\delta - 1) \) and \(\delta(G') \leq \delta(G) - 1 = \delta \), we have

\[
2\delta \geq \omega(A) + 1.
\]

Then by the same argument as that of Theorem 3.1, we can get that \(a \leq 1 \), a contradiction. Hence \(\omega_C(A) > \delta(G') \) and then \(G - S \) is super-\(\lambda \) by Lemma 1.2. \(\square \)

Note. By the definition of \(S_i(G) \), the graphs \(G \) in Theorems 3.1 and 3.2 are super-\(\lambda \). Now we use a graph to show that the condition \(\delta \leq n - 2 \) in Theorem 3.2 is necessary. Let \(G_0 = G_1 = K_3 \). Then \(\delta = n - 1 \). But the graph \(G = G(G_0; G_1; M) \) is not super-\(\lambda \).

4. The second family \(G(G_0, G_1, \ldots, G_{r - 1}; M) \) of networks

In this section, we will give the lower bound of \(S_i(G) \) for \(G = G(G_0, G_1, \ldots, G_{r - 1}; M) \).

Theorem 4.1. Let \(G = (V, E) \) be a connected graph of order \(n \) with \(\delta_i = \delta(G_i) = \lambda_i = 2i \geq 0 \), \(i = 0, 1, \ldots, r - 1 \) and \(r \geq 3 \). Let \(G = G(G_0, G_1, \ldots, G_{r - 1}; M) \) and \(\delta = \min \{ \delta_0, \delta_1, \ldots, \delta_{r - 1} \} \). Then

\[
S_i(G) \geq \delta - 1.
\]

Proof. We will show that for any \(S \subset E(G) \) with \(| |S| \leq \delta - 1 \), \(G' = G - S \) is super-\(\lambda \).

Let \(A \) be a vertex set of \(V(G) \) with \(2 \leq |A| \leq \left\lfloor \frac{|V(G)|}{2} \right\rfloor \) and \(G'[A] \) and \(G' \overline{A} \) being connected. We will complete the proof by considering the following three cases.

Case 1. \(G_i \) is connected in \(G = [A, \overline{A}] \) for \(0 \leq i \leq r - 1 \).

In this case, \(\omega(A) = 2n \). Thus

\[
\omega_C(A) \geq \omega(A) - |A| \geq 2n - (\delta - 1) > \delta + 2 \geq \delta(G'),
\]
and \(G' = G - S \) is super-\(\lambda \) by Lemma 1.2.

Case 2. There are \(k \) subgraphs in \(G_0, G_1, \ldots, G_{r - 1} \), say \(G_i, \ldots, G_k \), such that they are disconnected in \(G = [A, \overline{A}] \), where \(k \geq 2 \). If \(k \geq 3 \), then \(\omega(A) \geq \lambda_k + \ldots + \lambda_i \geq k\delta \). Thus

\[
\omega_C(A) \geq \omega(A) - |A| \geq k\delta - (\delta - 1) = (k - 1)\delta + 1 \geq \delta + 3 \geq \delta(G'),
\]
and \(G' = G - S \) is super-\(\lambda \) by Lemma 1.2. If \(k = 2 \), then \(\omega(A) \geq 2 + \lambda_i + \lambda_0 \geq 2 + 2\delta \) by the definition of \(G \) and \(|A| \leq \left\lfloor \frac{|V(G)|}{2} \right\rfloor \). Thus

\[
\omega_C(A) \geq \omega(A) - |A| \geq 2 + 2\delta - (\delta - 1) > \delta + 2 \geq \delta(G'),
\]
and \(G' = G - S \) is super-\(\lambda \) by Lemma 1.2.

Case 3. Assume, without loss of generality, that \(G_0 \) is disconnected and \(G_i (1 \leq i \leq r - 1) \) is connected in \(G = [A, \overline{A}] \).

If there exists \(G_i \) with \(i \neq 0 \) such that \(A \cap V(G_i) \neq \emptyset \), then \(V(G_i) \subset A \). Since \(G_0 \) is disconnected in \(G = [A, \overline{A}] \) and \(V(G_i) \subset A \), we have \(\omega(A) \geq \lambda_0 + n + 1 \geq \delta + n + 1 \). Note that \(n \geq \delta + 1 \), we have

\[
\omega_C(A) \geq \omega(A) - |A| \geq \delta + n + 1 - (\delta - 1) \geq \delta + 3 \geq \delta(G'),
\]
and \(G' = G - S \) is super-\(\lambda \) by Lemma 1.2.

Now we consider the case \(A \subset V(G_0) \). We suppose, to the contrary, that \(\omega_C(A) \leq \delta(G') \). Let \(|A| = a\). Then \(a \geq 2 \). Since \(\delta(G') \geq \omega_C(A) \geq \omega(A) - |A| \geq \omega(A) - (\delta - 1) \) and \(\delta(G') \leq \delta + 2 \), we have

\[
2\delta \geq \omega(A) - 1 = \omega(C_0(A)) + 2a - 1.
\]

(2)

Since \(G_0 \) is disconnected in \(G = [A, \overline{A}] \), \(\omega(C_0(A)) \geq \lambda_0 \geq \delta \). Thus \(\delta \geq 2a - 1 \) by (2).

On the other hand, for any \(z \in A, d_{C_0(A)}(z) = d_{C_0}(z) - d_A(z) \geq \delta - (a - 1) = \delta - a + 1 \). Thus
\[\omega_G(A) = \sum_{z \in A} d_G(z) \geq a(\delta - a + 1). \] (3)

From (2), (3) and \(\delta \geq 2a - 1 \), we have \((2a - 1)(a - 2) \leq a^2 - 3a + 1 \), which implies \(a \leq 1 \), a contradiction. Thus \(\omega_G(A) > \delta(G) \) and \(G = G - S \) is super-\(\lambda \) by Lemma 1.2. \(\square \)

5. The third family \(S_{\lambda}(G) \) of networks

Next we consider the value of \(S_{\lambda}(G) \) for \(G = SP_n \).

Lemma 5.1. \(G \) is an \((n - 1)\)-regular graph with \(|V(G)| = n! \) and \(\lambda = n - 1 \).

Proof. By the definition of \(G \), \(G \) is \((n - 1)\)-regular and \(|V(G)| = n! \). We will show, by induction on \(n \), that \(\lambda = n - 1 \). If \(n = 3 \) or \(n = 4 \), then it is easy to check that \(\lambda = \delta(G) = n - 1 \) (see Fig. 3(a) and (b)).

Let \(n \geq 5 \). Note that \(\lambda \leq \delta(G) = n - 1 \). To show that \(\lambda \geq n - 1 \), we just need to prove that for any edge set \(S \subseteq E(G) \) with \(|S| \leq n - 2 \), \(G - S \) is connected. By the definition of \(SP_n \), for any \(i \neq j \) \((1 \leq i, j \leq n) \), there is an edge set \(E_{ij} = [V(SP^i_{n-1}), V(SP^j_{n-1})] \) such that \(|E_{ij}| = (n - 2)! \).

If there exists \(i \), such that \(|S \cap E(SP^i_{n-1})| = n - 2 \), say \(i = 1 \), then \(S \subseteq E(SP^1_{n-1}) \). So \(SP^1_{n-1} \) is connected in \(G - S \) for \(2 \leq i \leq n \). By the definition of \(SP_n \), \(G - V(SP^1_{n-1}) \) is connected. On the other hand, for any vertex \(v \in V(SP^1_{n-1}) \), there exists \(u \in V(SP^j_{n-1}) \) \((j \neq 1) \) such that \(uv \in E(G - S) \). Thus \(G - S \) is connected.

Now we assume that for any \(i = 1, 2, \ldots, n \), \(|S \cap E(SP^i_{n-1})| \leq n - 3 \). Then \(SP^1_{n-1} - S \) is connected from induction for \(1 \leq i \leq n \). Since \((n - 2)! > (n - 2) \) by \(n \geq 5 \), \(E_{i,j} - S = \emptyset \) for any \(i \neq j \). Thus \(G - S \) is connected. Hence \(\lambda \geq n - 1 \) which implies \(\lambda = n - 1 \). \(\square \)

It is obvious that \(SP_3 \) is not super-\(\lambda \). By Lemma 5.1, we have the following result for \(SP_n \) when \(n \geq 4 \).

Lemma 5.2. Let \(n \geq 4 \). Then \(n - 3 < S_{\lambda}(G) < n - 2 \). In particular, \(G = SP_n \) is super-\(\lambda \).

Proof. By Lemmas 1.3 and 5.1, we just need to show \(S_{\lambda}(G) \geq n - 3 \). That is, we will show that for any \(S \subseteq E(G) \) with \(|S| \leq n - 3 \), \(G = G - S \) is super-\(\lambda \).

Let \(A \) be a vertex set of \(V(G) \) with \(2 \leq |A| \leq \left\lceil \frac{|V(G)|}{2} \right\rceil \) and \(G[A] \) and \(G[\overline{A}] \) being connected. Let \(|A| = a \). Then \(a \geq 2 \). We will complete the proof by considering the following three cases.

Case 1. \(SP^k_{n-1} \) is connected in \(G - \left[A, \overline{A} \right] \) for \(k = 1, 2, \ldots, n \).

Let \(l = \left| \left[SP^k_{n-1}, V(SP^k_{n-1}) \right] \subseteq A, 1 \leq k \leq n \right| \), then \(1 \leq l \leq \left\lceil \frac{n}{2} \right\rceil \). Thus \(\omega_G(A) \geq l((n - l)(n - 2)! - (n - 3)! - (n - 2)! - n + 3 > n - 1 > \delta(G) \) and \(G = G - S \) is super-\(\lambda \) by Lemma 1.2.

Case 2. There exist \(SP^i_{n-1}, SP^j_{n-1}, \ldots, SP^k_{n-1} \) with \(k \geq 2 \), such that they are disconnected in \(G - \left[A, \overline{A} \right] \).

By Lemma 5.1, \(\left| SP^i_{n-1} \right| = n - 2 \) for \(i = 1, 2, \ldots, n \). If \(|S| = 0 \), then \(\delta(G) = \delta(G) \) and \(\omega_G(A) = \omega_G(A) \geq k(n - 2)! - 2(n - 2)! - n + 3 \geq n - 1 = \delta(G) = \delta(G) \).

If \(|S| > 0 \), then \(\omega_G(A) \geq \omega_G(A) - |S| \geq k(n - 2)! - 2(n - 2)! - n + 3 = n - 1 \).

On the other hand, since \(G \) is regular and \(S \neq \emptyset \), \(\delta(G) < \delta(G) \), which implies \(\omega_G(A) > \delta(G) \). In these two cases, \(G = G - S \) is super-\(\lambda \) by Lemma 1.2.

Case 3. Assume, without loss of generality, that \(SP^i_{n-1} \) is disconnected and \(SP^i_{n-1} \) is connected for \(2 \leq i \leq n \) in \(G - \left[A, \overline{A} \right] \).

If there exists an \(SP^i_{n-1} \) such that \(A \cap V(SP^i_{n-1}) \neq \emptyset \), where \(i \neq 1 \), then \(V(SP^i_{n-1}) \subseteq A \). Since \(SP^1_{n-1} \) is disconnected in \(G - \left[A, \overline{A} \right] \) and \(V(SP^i_{n-1}) \subseteq A \), we have \(\omega_G(A) \geq \lambda + 2(n - 2)! - n + 2 + 2(n - 2)! \) Then we have \(\omega_G(A) \geq \omega_G(A) - |S| \geq n - 2 + 2(n - 2)! - (n - 3) > n - 1 > \delta(G) \) and \(G = G - S \) is super-\(\lambda \) by Lemma 1.2.
Now we consider the case $A \subset V\left(\text{SP}_{n-1}\right)$. If $|S| = 0$, then $\omega_{G}(A) = \omega(A) > \lambda_1 + 2 = n - 2 + 2 > \delta(G)$ and $G - S$ is super-λ by Lemma 1.2. So we can assume $|S| > 0$. Then $\delta(G) \leq \delta(G) - 1 = n - 2$.

We suppose, to the contrary, that $\omega_{G}(A) \leq \delta(G)$.

Since $n - 2 \geq \delta(G)$, we have $\omega_{G}(A) \geq \omega(A) - |S| \geq \omega(A) - (n - 3)$, we have

$$2n \geq \omega(A) + 5 = \omega_{\text{sp}_{1}}(A) + a + 5.$$ \hspace{1cm} (4)

Since SP_{i-1} is disconnected in $G - \left[A, \overline{A}\right]$, we have $\omega_{\text{sp}_{i-1}}(A) > \lambda\left(\text{SP}_{n-1}\right) = n - 2$. Thus we have $n \geq a + 3$ from (4).

On the other hand, for any $z \in A$, $d_{\text{sp}_{i-1}}(z) = d_{G}(z) - d(z) \geq n - a - 1$. Thus

$$\omega_{\text{sp}_{i-1}}(A) = \sum_{z \in A} d_{\text{sp}_{i-1}}(z) \geq a(n - a - 1).$$ \hspace{1cm} (5)

From (4), (5) and $n \geq a + 3$, we have

$$(a - 2)(a + 3) \leq a^2 - 5,$$

which implies $a \leq 1$, a contradiction. Thus $\omega_{G}(A) > \delta(G)$ and $G - S$ is super-λ by Lemma 1.2.

Furthermore, since $S_{i}(G) > n - 3 > 0$, G is super-λ. \hspace{1cm} \square

By Lemmas 5.1 and 5.2, we have the following result.

Theorem 5.3. Let $G = \text{SP}_{n}$ and $n \geq 5$. Then $S_{i}(G) = n - 2$.

Proof. By Lemma 5.2, we only need to show that $S_{i}(G) \geq n - 2$.

Let $S \subseteq E(G)$ with $|S|

\leq n - 2$ and $G' = G - S$. We will show that G' is super-λ. If $|S| = 0$, then $G' = G$ is super-λ by Lemma 5.2. So we will assume that $|S| \geq 1$ in the following discussion. Then $\delta(G') \leq \delta(G) - 1 = n - 2$.

Let A be a vertex set of $V(G)$ with $2 \leq |A| \leq \left\lfloor \frac{|V(G)|}{2} \right\rfloor$ and $G[A]$ and $G'[\overline{A}]$ being connected. Let $|A| = a$. Then $a \geq 2$. We will complete the proof by considering the following three cases.

Case 1. SP_{i-1} is connected in $G - \left[A, \overline{A}\right]$ for $1 \leq i \leq n$.

Then by the same argument in Lemma 5.2, $\omega_{G}(A) \geq (n - 1)! - (n - 2) > n - 2 \geq \delta(G)$ and G' is super-λ by Lemma 1.2.

Case 2. Suppose $\text{SP}_{i-1}^{1}, \text{SP}_{i-1}^{2}, \ldots, \text{SP}_{i-1}^{k}$ with $k \geq 2$ are disconnected in $G - \left[A, \overline{A}\right]$.

If $k \geq 3$, then $\omega_{G}(A) \geq k(n - 2) - n + 2 \geq 3(n - 2) - n + 2 = 2n - 4 > n - 1 > \delta(G)$ by $n \geq 5$ and G' is super-λ by Lemma 1.2.

Now we consider the case $k = 2$. Without loss of generality, we assume that SP_{n-1}^{1} and SP_{n-1}^{2} are disconnected in $G - \left[A, \overline{A}\right]$. If $|A \cap V\left(\text{SP}_{n-1}^{1}\right)| \geq 2$ or $|A \cap V\left(\text{SP}_{n-1}^{2}\right)| \geq 2$, then $\delta(G) \geq n - 1 > \delta(G)$ and G' is super-λ. Suppose $|A \cap V\left(\text{SP}_{n-1}^{1}\right)| = |A \cap V\left(\text{SP}_{n-1}^{2}\right)| = 1$. Set $A = \{u, v\}$, where $u \in V\left(\text{SP}_{n-1}^{1}\right)$ and $v \in V\left(\text{SP}_{n-1}^{2}\right)$. Since $G[A]$ is connected, $uv \in E(G)$ and then $\omega_{G}(A) = 2(n - 2)$. If $|S \cap \left[A, \overline{A}\right]| < n - 2$, then $\omega_{G}(A) > 2(n - 2) - (n - 2) = n - 2 > \delta(G)$ and G' is super-λ by Lemma 1.2.

If $|S \cap \left[A, \overline{A}\right]| = n - 2$, then $\omega_{G}(A) = \omega(G) - |S \cap \left[A, \overline{A}\right]| = 2(n - 2) - (n - 2) = n - 2$. Since $S \subseteq \left[A, \overline{A}\right]$ and $|S \cap \left[A, \overline{A}\right]| = n - 2 \geq 3$, there is a vertex of A, say u, is adjacent to at least two edges of S. Then $\delta(G) \geq d_{G}(u) \geq d(u) - 2 = n - 3 < n - 2 = \omega_{G}(A)$ and G' is super-λ by Lemma 1.2.

Case 3. Assume, without loss of generality, that SP_{i-1}^{1} is disconnected and $\text{SP}_{i-1}^{2} (2 \leq i \leq n)$ is connected in $G - \left[A, \overline{A}\right]$.

By the same argument as that of Lemma 5.2, we can assume $A \subset V\left(\text{SP}_{i-1}^{1}\right)$. Let $|A| = a$. Then $a \geq 2$. For any $z \in A, d_{\text{sp}_{i-1}}(z) = d_{G}(z) - d(z) \geq n - a - 1$. Thus

$$\omega_{\text{sp}_{i-1}^{1}}(A) = \sum_{z \in A} d_{\text{sp}_{i-1}^{1}}(z) \geq a(n - a - 1).$$ \hspace{1cm} (6)

We suppose, to the contrary, that $\omega_{G}(A) \leq \delta(G)$.

Subcase 3.1. $a \geq 3$.

Since $n - 2 \geq \delta(G)$, we have $\omega_{G}(A) > \omega(G) - |S| \geq \omega(G) - (n - 2)$. we have
2n ≥ ω(A) + 4 = ω_{SP^{+1}_{1}}(A) + a + 4. \hspace{1cm} (7)

Since SP^{+1}_{1} is super-λ and SP^{+1}_{1} is disconnected in $G - [A, \overline{\lambda}]$, $\omega_{SP^{+1}_{1}}(A) ≥ i(SP^{+1}_{n+1}) + 1 = n - 1$. Then $n ≥ a + 3$ from (7). From (6), (7) and $n ≥ a + 3$, we have

$$(a - 2)(a + 3) ≤ a^2 - 4,$$

which implies $a ≤ 2$, a contradiction. Thus $\omega_{C}(A) > \delta(G)$ and G is super-λ by Lemma 1.2.

Subcase 3.2. $a = 2$.

Let $A = [u, v]$. Since $G[A]$ is connected, $uv \in E(G)$. If $|S \cap [A, \overline{\lambda}]| ≤ n - 3$, then $n - 2 ≥ \delta(G) ≥ \omega_{C}(A) = ω(A) - |S ∩ [A, \overline{\lambda}]| ≥ ω(A) - (n - 3)$. So

$$2n ≥ ω(A) + 5 = ω_{SP^{+1}_{1}}(A) + a + 5.$$ \hspace{1cm} (8)

Since $ω_{SP^{+1}_{1}}(A) ≥ i(SP^{+1}_{n+1}) + 1 = n - 1$, we have $n ≥ a + 4$ from (8). From (6), (8) and $n ≥ a + 4$, we have $a^2 - 5 ≤ a^2 + 2a - 8$, which implies $2a ≤ 3$, a contradiction. Thus $ω_{C}(A) > \delta(G)$ and G is super-λ by Lemma 1.2.

Now we consider the case $|S ∩ [A, \overline{\lambda}]| = n - 2$.

Since $|S ∩ [A, \overline{\lambda}]| = n - 2 ≥ 3$ and $|A| = 2$, there is a vertex of A, say u, which is adjacent to at least two edges in S. Then $\delta(G) ≤ d_{C}(u) ≤ d(u) - 2 = n - 3$. On the other hand, $n - 3 ≥ \delta(G) ≥ ω_{C}(A) = ω(A) - n + 2$, which implies

$$2n ≥ ω(A) + 5 = ω_{SP^{+1}_{1}}(A) + a + 5.$$ \hspace{1cm} (8)

By the same argument as above, we have the same contradiction. Thus $ω_{C}(A) > \delta(G)$ and G is super-λ by Lemma 1.2. \hfill \square

For $n = 4$, we have the following conclusion.

Theorem 5.4. Let $G = SP_{4}$. Then $S_{\lambda}(G) = 1$.

Proof. By Lemma 5.2, $1 ≤ S_{\lambda}(G) ≤ 2$. So we just need to show that there exists an edge set $S ⊆ E(G)$ with $|S| = 2$ such that $G - S$ is not super-λ.

Let $uv \in E(G)$, $e_{j} = ui_{j}$ $(j = 1, 2)$ and $e_{j} = ui_{j}v$ $(j = 3, 4)$. Then there are two nonadjacent edges in $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$. Let $A = [u, v]$ and $S = \{e_{1}, e_{2}\}$. Since $G = SP_{4}$ is 3-regular, $ω_{C, S}(A) = 2 = \delta(G - S)$. By Lemma 1.2, $G - S$ is not super-λ. Thus $S_{\lambda}(G) = 1$. \hfill \square

Acknowledgments

This work is partially supported by National Natural Science Foundation of China (Nos. 10971114 and 10990011). The authors are thankful to anonymous referees for their useful comments.

References

